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Nonequilibrium critical dynamics of the triangular antiferromagnetic Ising model
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We investigate the nonequilibrium critical dynamics of antiferromagnetic Ising model on a two-dimensional
triangular lattice via dynamic Monte Carlo simulation employing spin-flip kinetics. Macroscopic degeneracy of
the ground state originating from geometric frustration fundamentally affects the nonequilibrium dynamics of
the system. In particular, the defects and the loose spins~whose flip costs no energy! play key roles in the
dynamics. The long-time evolution is characterized by a critical dynamic scaling with a growing length scale
j(t). With random initial configurations,j(t) exhibits a subdiffusive growth in time,j(t);t1/z with 1/z
.0.43, whilej(t) shows a diffusive growth withz52 for the relaxation within the dominant sector of the
ground-state manifold. The nonequilibrium critical dynamics therefore exhibits an interesting initial-state de-
pendence. Persistence and the two-time temporal properties are also discussed.
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I. INTRODUCTION

Antiferromagnetic Ising~AFI! model on a triangular lat-
tice, a prime example of periodically frustrated Ising mod
@1#, has remarkable equilibrium properties originating fro
frustration caused by the geometry of the underlying latti
The model has an exponentially large number of grou
state degeneracies, leading to nonvanishing entropy per
at zero temperature@2,3#. Moreover, the ground-state is crit
cal in that the equilibrium spin-correlation functionC(r )
shows an algebraic decay with their separationr, i.e., C(r )
;r 2h with h51/2 @4–6#. With higher spins, further inter
esting features have been observed@7,8#. Recently there has
been a renewed interest on the triangular AFI model~with
elastic distortions@9–12# or a staggered field@13# to lift the
infinite degeneracy! in the context of nonequilibrium glass
dynamics which may offer insights into the nature of t
liquid-glass transition.

One may expect that this macroscopic ground-state
generacy would crucially affect the nonequilibrium evoluti
process followed by a quench to the zero~critical! tempera-
ture. In this work, we aim to characterize this nonequilibriu
critical dynamics of the triangular AFI model using a d
namic Monte Carlo simulation method with spin-flip kine
ics. We find that the system exhibits a unique coarsen
dynamics due to an exponentially large number of degen
cies and criticality of the ground-state. We first consider
dynamics evolved from a random disordered initial state
which there exist many localized~point! defects. In this situ-
ation, the coarsening process is governed by defect dyna
on the fluctuating background of ground-state configuratio
These ground-state fluctuations are mediated by the lo
spins whose flips require no energy cost. The coarsen
manifests a single growing length scale. In particular,
average defect separation and the spin-correlation le
show the same subdiffusive growth in timeR(t);tf with
f;0.43. Moreover, the root-mean-square~RMS! displace-
ment of an isolated defect also gives the same subdiffu
growth. In addition, the coarsening exhibits a dynamic s
similarity under the spatial rescaling, which is demonstra
1063-651X/2003/68~6!/066127~11!/$20.00 68 0661
s

.
-

pin

e-

g
a-
e
n

ics
s.
se
g

e
th

e
-
d

by the critical dynamic scaling of the appropriate sp
correlation function.

As discussed in detail below, our simulation results~in
particular, the subdiffusive growth law! appear to be in dis-
agreement with the earlier simulation study of Mooreet al.
@14# on the defect dynamics in the present system. In th
study, Mooreet al. contend that the defects are interacti
via entropic Coulomb force, and as a result the defect den
decays in time asr(t);(lnt)/t. This implies that the growing
length scale exhibits a diffusive growth with logarithmic co
rection, just as in the coarsening dynamics of the tw
dimensionalXY model.

A close examination on the defect motion seems to offe
different viewpoint on the defect dynamics. We observe t
the defect motion is highly correlated with fluctuations of t
loose spins; that is, depending on the nearby spin config
tions, defects are not allowed to move in arbitrary directio
but are constrained to take only limited number of directio
Moreover, the fact that the RMS displacement of an isola
defect exhibits the same subdiffusive behavior as the gr
ing length scale suggests that defects perform a kind of
stricted random walk in theabsenceof mutual interaction
force. We believe that it is this correlated motion of defe
with loose spins in the fluctuating background configuratio
that gives rise to the observed subdiffusive growth. We a
find that the defect motion becomes more subdiffusive wh
fluctuations of loose spins are forced to be frozen-in.

Starting from a defect-free initial state and quenching
system to the zero temperature, one can look at the dyna
evolution within the ground-state manifold. It is well know
@15# that a useful way of classifying the degenerate grou
states is to map each ground-state to its corresponding d
configuration. Strings of dimers can be obtained from
overlap of one dimer configuration with the given referen
~see below for details!. The number of ground-states belon
ing to a given string density has been exactly computed@13#
and hence the ground-state manifold is divided into sec
each of which has a unique string density. The dynamics
this case proceeds only via flips of the loose spins. Theref
the initial state without the loose spin cannot relax and
©2003 The American Physical Society27-1
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dynamics becomes trivially nonergodic. Also the string de
sity is shown to be conserved during the time evolutio
Hence the evolving states should be confined within the v
sector to which the initial state belongs. The dynamics wit
the ground-state manifold is therefore nonergodic. In
present work, we have focused on the dynamics within
particular sector which has the string densityp52/3. This
sector is dominant over other sectors in its number
ground-states: it is the maximum entropy sector@13#. In fact,
starting from a random disordered state, the system evo
into this dominant sector. The relaxation within this sec
also shows a critical dynamic scaling property. But, in co
trast to the dynamics from random initial state with defec
the correlation length of spin fluctuations growsdiffusivelyin
time: j(t);t1/2. The nonequilibrium critical dynamics in th
present system therefore exhibits an initial-state depende
A similar initial-state dependence has been recently obse
in the nonequilibrium critical dynamics of the two
dimensionalXY model@16#. However, one distinct feature i
the present system is that the growing length scale exh
power-law growth for both disordered~with defects! and or-
dered ~without defects! initial states with two different
growth exponents. In contrast to the case of the tw
dimensionalXY model, there is no logarithmic correction i
the present system.

We also discuss nonequilibrium properties of aging a
persistence. Particularly interesting is the aging dynamics
hibited by the two-time spin-autocorrelation function.
usual kinetic Ising models, the relaxation timet r is observed
to grow linearly with the waiting timetw ; t r;tw . But in the
present system, the relaxation becomes slower, leading
sublinear dependence on waiting time;t r;tw

m with m
.0.89.

After introducing the model and simulation method, w
discuss details of the above statements. The paper ends
summary and concluding remarks.

II. THE MODEL AND SIMULATION METHOD

The Hamiltonian of the AFI model on a triangular lattic
in two dimensions is given by

H5J(̂
i j &

s is j , ~1!

wheres i561 is the Ising spin at sitei, J.0 the interaction
strength~we setJ51 throughout the paper!, and ^ i j & de-
notes the nearest-neighbor pairs with the coordination n
ber being equal to six in a triangular lattice. We perfo
dynamic Monte Carlo simulations on the model subjected
T50 quench using a single spin-flip Metropolis dynam
with the flip-probability

A5H 0 for dE.0

1 for dE<0,
~2!

wheredE is the energy difference between before and a
the flip of a randomly chosen spin. Note that since we
considering zero-temperature quench only, the flip with po
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tive energy cost is always rejected. In this work, we a
considering the two different initial configurations. The fir
one is the random initial configurations in which many d
fects are generated. For this initial state, the time evolutio
characterized by the annihilations of defect pairs. The ot
initial state is one of the ground-states which belong to
dominant ground-state sector. We use the lattice with lin
dimensionL53000 for the case of random initial state, an
L51020 for that of ordered initial state employing period
boundary conditions~the total number of spins is given b
N5L3L).

III. SIMULATION RESULTS AND DISCUSSION

The system can be divided into three sublattices. It is w
known @4# that the equilibrium spatial correlation betwee
spins separated by the distancer which belongs to the sam
sublattice exhibits an algebraic decay withr, i.e., Ceq(r )
;r 2h with h51/2. We thus first consider the nonequilib
rium spatial spin correlation in thesamesublattice@17#:

C~r ,t !5
1

N/3 K (
i 51

N/3

s i~ t !s i 1r~ t !L , ~3!

wheres i(t) is the spin at sitei at time t which is measured
from the time of the quench and̂•••& denotes an averag
over different initial states. In the simulation, ther depen-
dence ofC(r ,t) for a given timet is measured along the
three major axes of the triangular lattice withr 53na0 where
n50,1,2, . . . anda0 is the lattice spacing. The final result o
C(r ,t) for a given sublattice is the average of these th
values.

Our simulation shows essentially the same results
three different sublattices and the presented result in Fig.~a!
is the averaged result over three sublattices for better st
tics. This dynamic spin-correlation function reveals the ex
tence of a growing length scale with time. Due to the cr
cality of the ground-state one may expect that the dyna
spin-correlation function exhibits a critical dynamic scalin
of the form

C~r ,t !5r 2hF„r /j~ t !…, h51/2. ~4!

In order to test this scaling, we first extract a length sc
j(t) from C̃(r ,t)[r hC(r ,t) with h51/2 for a given timet,
which is defined asC̃„r 5j(t),t…5C0 , C0 being an arbitrary
constant. Here we takeC050.2. Shown in Fig. 1~a! is the
plot C̃(r ,t) versus the rescaled distancer /j(t) for different
times t51032n Monte Carlo steps~MCS!, with n
52,3, . . . ,13. Allcurves are collapsed onto a single mas
curve. Worse collapse in the rescaled distancer /j(t) larger
than ;2 seems to be due to the fact that the multiplyi
factor r h in the scaling scheme has an effect of magnifyi
the small correlation region in the long distances. As sho
in Fig. 1~b!, the nonequilibrium spin-correlation lengthj(t)
exhibits a power-law growth in time asj(t);t1/z. The slope
in Fig. 1~b! gives 1/z.0.43(1) @z.2.33(5)#.

In order to understand better this subdiffusive coarsen
behavior, we focus on the structure of the ground-state
7-2
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NONEQUILIBRIUM CRITICAL DYNAMICS OF THE . . . PHYSICAL REVIEW E 68, 066127 ~2003!
lowest excitation~defect! in the system. Due to the geomet
of the triangular lattice, the ground-state is characterized b
spin configuration in which each unit triangular plaque
inevitably has one and only one ‘‘unsatisfied’’~ferromagnet-
ic! bond. It is then easy to see qualitatively why there m
be exponentially large number of degeneracies in the grou
state@2#. Let us first denotesa as a spin belonging to th
sublatticea5A,B, andC. Note then that six nearest neigh
bors of any spinsA cannot belong to the sublatticeA. We
first make the signs of allsA’s and sB’s opposite. This as-
signment automatically leads to a ground-state regardles
signs of spinssC since the flip ofsC does not alter the
energy. This leads to the degeneracy 2N/35exp@(N/3)ln 2#,

FIG. 1. ~a! A scaling collapse forC(r ,t) using a critical dy-
namic scalingC(r ,t)5r 2hF„r /j(t)… with h51/2. This scaling
property demonstrates that the evolution process possesses
namic self-similarity when spatial distance is rescaled with resp
to the nonequilibrium spin-correlation lengthj(t) which is defined

as C̃„j(t),t…50.2 with C̃(r ,t)[r hC(r ,t). ~b! Growth of the spin-
correlation lengthj(t) in a double-log plot ofj(t) vs t. The line on
the left ~circles! is for the case in which the background configur
tion is fluctuating, and the one on the right~squares! is for the case
in which the background state is frozen. Dotted lines are stra
lines with slopes 0.43 and 0.18. Note that in the case of fro
background, the lengthj(t) is measured fort55120, 10 240,
20 480, 40 960, 81 920 MCS due to slower growth.
06612
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giving the entropy per spins5(ln 2)/3.0.231 ~throughout
we set the Boltzmann constant unity!. The actual entropy
density has been analytically calculated by Wannier@2# as

s5~2/p!E
0

p/3

ln~2cosx!dx.0.3383, ~5!

which is larger than the above estimate due to the existe
of further freedom@2# for the spin flip.

Since the lattice geometry forbids a unit plaquette to ha
only two unsatisfied bonds, the configuration of the low
excitation in each unit plaquette is that in which all thr
bonds are unsatisfied~i.e., all three spins with up or down
simultaneously!. This unit plaquette serves as a localiz
lowest excitation, a point defect@18#. It is easy to see that a
single defect alone cannot be annihilated by flip of one of
spins forming that defect. Annihilation of defects occurs
pairs. Hence a ‘‘charge’’ can be assigned to the defect.
positive charge defect can be identified withup-plaquette
~i.e., triangle pointing upward! with all three spins having the
same sign~regardless of up or down! and the negative charg
defect with down-plaquette~i.e., triangle pointing down-
ward! with all-the-same-sign spins. As we see shortly belo
the coarsening process here involves motion and annihila
of these defects~with opposite charges! which are created in
a random disordered initial state. A defect can move one
lattice spacing by the flip of one of the spins belonging
that defect. The motion of a defect doesnot cost energy. The
energy is lowered only via annihilation of defects.

In addition to the presence of the point defects, there
ists another object called the loose spin@19# which plays an
important role in the coarsening dynamics. The loose spi
defined as the spin whose six nearest neighbors are chan
their signs alternatingly~see Fig. 2!. Hence the loose spin
can be flipped without energy cost. Of course its existenc
intimately connected to the infinite degeneracy of t
ground-state. Flips of loose spins provide incessant fluc
tions in the background ground-state configurations. As d
cussed in detail below, these ‘‘vacuum’’ fluctuations a
strongly correlated with defect motions.

Shown in Fig. 3~a! is the relaxation of the defect densit
r(t) and the excess energyDE(t)[E(t)2EG with EG
521 being the equilibrium ground-state energy per sp
They are shown to be proportional to each other, as t
should be in the zero-temperature quench. Figure 3 sh
that they exhibit a power-law relaxationDE(t);r(t);t2c

with c.0.86(2). This relaxation is due to annihilation o
defects. Note that the relaxation of the defect density is
lated to the growing length scalej(t) extracted from the
dynamic spin-correlation function asr(t);j22(t), as dem-
onstrated in the inset of Fig. 3~a!. This result implies that the
spin-correlation lengthj(t) is proportional to the averag
separationd(t) between defects sincer(t);d22(t) in two
spatial dimensions, assuming uniform distribution of defec
Therefore we may state that the coarsening process is
erned by the single length scale which is the growing se
ration between defects due to their mutual annihilation.

We point out that the above subdiffusive domain grow
is not in accord with a recent simulation work of Moor
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KIM, KIM, AND LEE PHYSICAL REVIEW E 68, 066127 ~2003!
et al. @14#. They claim that the relaxation of the defect de
sity exhibits a logarithmic correction to the diffusive beha
ior as r(t);(ln t)/t. Their interpretation on their simulatio
results is that the defect motion in the present system is
actly the same as that observed in the coarsening of the
dimensionalXY model @20–22#. In particular, they asser
that the defects interact with Coulomb force and the mobi
of defects depends on the distance between them. The
difference is the origin of the Coulomb force: it is argued
be entropic rather than energetic since the motion of def
does not cost energy. With our simulation data, we have t
to check if the defect density has the logarithmic correct
as r(t);(ln t)/t by plotting tr(t) against lnt. As shown in
Fig. 3~b!, instead of a straight line, we find that the pl
shows a considerable upward curvature in almost the en
simulation time up tot581 920~MCS!. This is in contrast to
the result of Mooreet al., which claims that there exists
time region of about one and half decade with a straight
fit. But we do not see such a regime in our simulations. I
not clear to us what causes this discrepancy between the
simulation results. One comment we can make is that s
we are dealing with a dominant multiplicative correction fa
tor, the correction fit usually should work for almost enti
time region. The result of Mooreet al., showing only a one
and half decade of logarithmic correction fit after three a
half decades of something else, seems very unusual in
sense. We even do not see such a regime in our simula
but rather find a continuous upward curvature. Although

FIG. 2. A negative charge defect and its nearby spin configu
tion which is extracted from a simulation run. Filled and op
circles represent up and down spins, respectively. Encircled are
loose spins which can be flipped without energy cost. Fluctuatio
the background state is mediated by flips of these loose spins. W
either spin 2 or spin 3 is flipped, the defect moves horizontally
the right or along the direction (2→3) downward, respectively
whereas the defect is not allowed to move~to the left! by the flip of
spin 1 which requires creation of defects. However, if the loose s
which is one of the nearest neighbors to spin 1, is flipped, then
flip of spin 1 lets the defect move to the left. Hence for this case
background fluctuation opens up the previously blocked path of
defect. The opposite event occurs for spin 2 where the flip of
loose spin~nearest to spin 2) blocks the previously allowed path
the defect. On average, the loose spin fluctuations enhance the
fusion of defects compared to the case of frozen background.
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principle we cannot rule out the possibility that our da
cross over to a straight line fort.81 920~MCS!, it would be
an extremely odd scenario that the defect density in
model shows a power law over almost five decades of t
scale and then change its behavior for longer times. At
rate, in our simulation time scales, the power-law decay
pears to be far superior to the power law with logarithm
correction.

We find that the actual defect motion is highly correlat
with its local environment. This is one crucial feature of t
defect dynamics in the present system, which we believe
be the microscopic origin of the observed subdiffusive d
namics of defects. Figure 2 shows a single defect and
local environment which is extracted from a real simulati
run. We observe that among six possible directions of de
motion there exist some directions along which the motion
defect is not allowed at least momentarily until neighbori
spins provide favorable environment by spin flip. This te
porary blocking of defect motion is due to the fact that a s
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FIG. 3. ~a! The relaxation of the defect densityr(t) ~dashed
line! and the excess energy densityDE(t) ~solid line! for the two
cases of fluctuating and frozen background ground-state. Slo
decay in long times is for the latter case. Dotted lines are
straight lines with slopes20.86 and20.56. Inset: A double log
plot of r(t) vs j(t). The filled circles are the simulation data, an
dotted is the straight line with slope22. ~b! A semilog plot oftr(t)
vs t. It shows a continuous upward curvature over almost the en
time region.
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flip leading to the defect motion along the blocked directi
requires creation of defect pairs, which is forbidden in t
zero-temperature kinetics. Note that this microscopic blo
ing effect is absent, for example, in the zero-temperat
coarsening of one-dimensional ferromagnetic Ising mo
where a defect~domain wall! performs free random walk
which exhibits a diffusive domain growth. In connectio
with this feature, we have calculated the time dependenc
the mean-square displacement of defects in the low-den
limit, i.e., when defects are far away from one another.
find thatR2(t);tb with b.0.86, as shown in Fig. 4. There
fore the RMS displacement exactly corresponds to
growth law of interdefect separations and also the scale
domain sizej(t). This provides a strong numerical eviden
that defects which are sufficiently isolated perform restric
~subdiffusive! random walks, which is most probably due
the fluctuation of ground-states. If, on the other hand,
suppose that a kind of entropic Coulomb force is in act
here for the motion of defects, the local motion of a su
ciently isolated defect should be at least diffusive, wh
then is inconsistent with our result above. Therefore we
lieve that the consistent picture on the defect dynamic
that defects perform a restricted random-walk motion due
their correlated motion with loose spins, not due to th
presumed Coulombic interaction.

We further point out that the ground-state fluctuations
tually facilitate the motion of defects; that is, the dynam
becomes much slower in the absence than in the presen
background fluctuations of loose spins. We let the ba
ground ground-state configuration fixed during the coars
ing and let the defect motion occur by flipping the spins
the triangular plaquette pertaining to the defects. In this s
ation, the RMS displacement of a defect in the low-dens
limit showsR2(t);tb with b.0.50, as shown in Fig. 4. We
therefore see that fluctuations of ground-state configurat
have the effect of relatively enhancing the diffusion of def
motion compared to that in the absence of the fluctuatio
We have also calculated the dynamic spin-correlation fu

FIG. 4. Mean-square displacementR2(t) vs time t for an iso-
lated defect for the two cases of fluctuating and frozen backgro
ground-state. The solid line with larger slope is obtained for
former case. Dotted lines are the straight lines with slopes 0.86
0.50.
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tion C(r ,t) in this situation. As shown in Fig. 5, we find tha
C(r ,t) shows the same critical dynamic scaling as in Eq.~4!,
but with a much smaller growth exponent;C(r ,t)
5r 2hG(r /t1/z) with 1/z.0.18. As for the defect relaxation
we find that the defect density relaxes asr(t).t2c with c
.0.56. Thus not only the dynamics slows down but also
becomes more complicated: it is characterized by appear
of the multiple length scales. Further study is needed to
solve this puzzling nonproportionality among these len
scales in the absence of loose spin fluctuations.

Phenomenologically one may imagine that the fluctu
tions of ground-state configurations among different deg
erate states supply some background potential with sp
dependence. We have seen that these fluctuations cau
microscopic blocking on the motion of defects. In gener
one thus might represent this kind of restricted potential
some spatio-temporally correlated noise upon the motion
defects as follows:drW(t)/dt5 fW(r ,t) whererW(t) is the posi-
tion vector of the defect andfW(rW,t) is a spatiotemporally
correlated noise witĥfW(rW,t)• fW(rW8,t8)&5F(urW2rW8u,ut2t8u).
If we suppose thatF is replaced by a simple uncorrelate
white noise, then we would get a pure diffusion. Since
numerical result from Monte Carlo dynamics shows a s
diffusive behavior, we expect that some spatiotemporal c
relation in the noise should be taken into account. This
also reasonable considering the fact that the zero tempera
is the critical point with power-law correlations in the sp
fluctuations. Since we do not know of any analytic metho
of solving the above effective equation for the motion of
isolated defect, we cannot give any concrete functional fo
of F. The full set of higher moments of the displaceme
(rW2rW8) may be needed to determine these exponents.

We have also considered the relaxationwithin the ground-
state manifold. Before we discuss the dynamics, we brie
describe the method of dimer coverings@15# which provides
an effective way of classifying the macroscopically large d
generate ground-states. In a ground-state configuration,

d
e
nd

FIG. 5. Scaling collapse of the spin-correlation functionC(r ,t)
when fluctuations of loose spins are completely suppressed.
same critical dynamic scaling as in Fig. 1~a! holds in this slow
dynamics as well. But the scaling function is distinct from the o
shown in Fig. 1~a!.
7-5
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KIM, KIM, AND LEE PHYSICAL REVIEW E 68, 066127 ~2003!
draws a line~dimer! such that it intersects every unsatisfi
bond from one center to the other of the two unit plaque
sharing this unsatisfied bond. Then each unit plaquette
ground-state configuration has only one dimer. By the sa
procedure, one can obtain another dimer covering fo
‘‘standard’’ ground-state. This standard ground-state is c
sen to be the ‘‘stripe’’ state in which every spin along ea
horizontal direction has the same sign, but the sign is a
nating along the vertical direction. For this stripe state
dimer is then placed vertically on every horizontal bon
Superposing a dimer configuration onto the standard o
one obtains a string configuration. The ground-states ca
classified by their string density which is defined asp
[Ns /L whereNs is the number of strings andL linear di-
mension of the system. The ground-states can be arra
into different sectors and each sector is characterized by
string densityp of the ground-states belonging to that sect
The entropy densityS(p)5(1/N)lnN(p) @N(p) being num-
ber of ground-states# in a given sector with the string densit
p has been exactly calculated by a transfer-matrix metho
@13#

S~p!5~2/p!E
0

pp/2

ln~2cosx!dx. ~6!

We thus know that the sector with nonzero string density
a macroscopic number of ground-states: the degeneracy
its extensivity only forp50. Stripe state is an example o
such zero-entropy states. The entropy functionS(p) has the
maximum atp52/3 sinceS8(p)5 ln@2cos(pp/2)#50 at p
52/3 andS9(p)52(p/2)tan(pp/2),0 for 0,p<1 where
8[d/dp. The maximum entropy ofS(p) at p52/3 is noth-
ing but the entropy densitys derived by Wannier, Eq.~5!.
Considering the exponential dependence onN of the degen-
eracy, this implies that the sector withp52/3 dominates in
its number of ground-states. Note also that the loose s
are always located atisolatedkinks on a string.

Now we discuss the relaxation dynamics within t
ground-state manifold. In particular, we have taken init
state as the one shown in Fig. 6. We consider the z
temperature quench from this state. The string density
this state isp52/3. Thus it belongs to the maximum entrop
sector. The density of loose spins is also given by 2/3. E
sublattice in this state has a long-range order with the s
lattice magnetizationms51. Since the initial state is defec
free, the time evolution from this state does not proceed
mutual annihilation of defects. As observed from Fig. 6, t
relaxation must proceed via flip of loose spins. Therefore
initial defect-free ground-state without loose spins cannot
lax at all; the relaxation is trivially nonergodic. The strip
state is such an example. Once a loose spin is flipped,
its six nearest neighbors cannot relax due to nonzero en
cost for the flip. Another loose spin which is not a near
neighbor to the flipped loose spin should be flipped for f
ther relaxation. It would be then crucial that the once-flipp
loose spins be selectedagain since the relaxation would b
frozen without these repeated flips.

Shown in Fig. 7~a! is the dynamic spin-correlation func
tion C(r ,t) where spins belong to the same sublatti
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C(r ,t) for a given timet relaxes toward a nonzero value
large distances which is the square of sublattice magne
tion, ms

2(t). This saturation sets in at larger distances for l
times; that is, the correlation lengthj(t) of spin fluctuation
grows in time, which is the only growing length scale in th
relaxation. This relaxation also exhibits a critical dynam
scaling when the distance is rescaled in terms ofj(t), which
is demonstrated in Fig. 7~b! for the correlation function for
the spin fluctuationCF(r ,t)[@C(r ,t)2ms

2(t)#. The scaling
function is distinct from that for disordered initial state. Ins
of Fig. 7~b! shows that the correlation length of spin fluctu
tion exhibits a diffusive growth in time, i.e.,j(t);t1/z with
1/z.0.51. One can also directly obtain the dynamic exp
nent z from the relaxation of the sublattice magnetizati
ms(t). From the critical dynamic scaling C(r ,t)
5r 2hQ„r /j(t)…, the scaling functionQ(x) should behave as
Q(x);xh for largex. This givesms

2(t);j2h(t);t2h/z. In-
set of Fig. 7~a! shows a power-law relaxation ofms

2(t). The
measured slope20.25 gives the dynamic exponentz.2.0.
This dynamic exponent, indicating a diffusive growth,
smaller than the corresponding one for random disorde
initial configuration. Therefore we observe that there exi
an intriguing initial-state dependence in the nonequilibriu
critical dynamics of the present system. A similar initial-sta
dependence has been observed@16# in the nonequilibrium
critical dynamics of the two-dimensionalXY model
quenched to any temperature on the critical line of tempe
tures 0,T<TKT , TKT being the Kosterlitz-Thouless~KT!
transition temperature. In this case, while the nonequilibri
correlation lengthj(t) exhibits a diffusive growthj(t)
;t1/z with z52 for an ordered initial state without free vo
tices,j(t) grows in time asj(t);(t/ ln t)1/2 for a disordered
initial state with free vortices.

Another related quantity we attempted to monitor is t
time dependence of the loose spin densityr l(t) which is
shown in Fig. 8. Its relaxation is characterized by a pow
law approach to the nonvanishing asymptotic valuer l(`)
.0.29 for an ordered initial state@r l(0)52/3# of Fig. 6:

FIG. 6. A ground state with fully ordered sublattice magnetiz
tion (ms51). This state has the loose spin densityr l52/3 ~open
circles are loose spins! as well as the string densityp52/3 ~see the
text for detail!. The time evolution from this state is driven b
fluctuations of loose spins.
7-6
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NONEQUILIBRIUM CRITICAL DYNAMICS OF THE . . . PHYSICAL REVIEW E 68, 066127 ~2003!
r l(t)5r l(`)1At2a with a.0.98 (A is a positive constant!.
We also find that starting from a random disordered s
with defectsr l(t) shows a different power-law relaxatio
toward the same asymptotic valuer l(`): r l(t)5r l(`)
2Bt2a8 with a8.0.75 andB being a positive constant. Th
slower relaxation seems to be due to the presence of def
So far there is no known relationship between the grow
exponent and the above two exponentsa anda8. These two

FIG. 7. ~a! Equal-time sublattice spin-correlation functio
C(r ,t) for the dynamics within the ground-state manifold from
initial state shown in Fig. 6. The times are given byt54032n MCS
with n51,2, . . . ,8. Thespin correlation at long distances is equ
to ms

2(t) which decays in time. Note that the distance over wh
C(r ,t) relaxes to its asymptotic value becomes larger with incre
ing time, which means that the correlation length of the spinfluc-
tuation @shown in~b!# grows in time. Inset: Relaxation of the sub
lattice magnetization squarems

2(t). The dotted line is a straight line
with slope20.25. Using a scaling argumentms

2(t);t2h/z and h
51/2 we estimate the dynamic exponentz.2.0. ~b! A scaling plot
for CF(r ,t). The nonequilibrium dynamics within the domina
sector ~see the text! from the initial state shown in Fig. 6 als
satisfies a critical dynamic scaling property. Inset: Growth of
correlation lengthj(t) for the spin-fluctuation correlation functio
CF(r ,t)[C(r ,t)2ms

2(t). Dotted line is a straight line with slope
0.51.
06612
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exponents are probably new nonequilibrium exponents in
triangular AFI model. The same asymptotic value ofr l(`)
for two different types of initial states indicates that rando
initial states evolve toward the dominant sector which h
maximum entropy, i.e., the sector with the string densityp
52/3. Thus the sector with string densityp52/3 has the
average loose spin densityr l.0.29. This asymptotic value is
perhaps related to the entropy of the ground-state. It wo
be interesting to verify this possibility analytically. Note als
from Fig. 6 that it is not possible to increase or reduce
number of strings by flips of loose spins. Thus the evolvi
states always lie within the same sector. This feature sho
hold for an initial state with a general string densityp. In this
sense, the time evolution within the ground-state manifold
a nonergodic dynamics. Recent works have considered
entropy vanishing transition from the dominant sector to
zero-string sector within the ground-state manifold which
induced by an external perturbation such as lattice comp
sion@12# or staggered field@13#. This entropy vanishing tran
sition is similar to that observed in the random energy mo
and other so-called discontinuous spin-glass models, wh
may have significant implications to the nature of the liqu
glass transition@23#.

In connection with the nonergodic relaxation within th
ground-state manifold, it is known that the deposition a
evaporation kinetics ofk-mers (k>3) on one-dimensiona
lattice is characterized by the break up of the entire ph
space into the exponentially large number of sectors in
steady state@24#. Each sector has a unique value of the s
called irreducible string which is a conserved quantity dur
the time evolution@25,26#. Hence the dynamics is strongl
nonergodic since sectors are mutually disconnected. M
over, it is shown numerically that the spin~particle! autocor-
relation in a sector shows either a power-law or a stretc
exponential relaxation, the power-law exponent being se
dependent. It would be therefore very interesting to exam
the interesting possibility that the dynamic exponentz char-
acterizing the correlation of spin fluctuations may differ fro
one sector to another in the present system.

s-

e

FIG. 8. Relaxation of the loose spin densityr l(t) for both cases
of the initial state of Fig. 6~solid line! and random disordered initia
states with defects~dashed line!. For both casesr l(t) approaches
toward the same asymptotic valuer l(`).0.29.
7-7
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FIG. 9. ~a! Relaxation of the spin-autocorrelation functionA0(t). Solid line is a straight line with slope 0.86.~b! Relaxation of the
two-time spin-autocorrelation functionA(tw ,tw1t) for various waiting times. ~c! Scaling attempt according toA(tw ,tw1t)
5t2h/zG(t/tw). This scaling scheme is based on the assumption that the relaxation time is linearly proportional to the waiting timetw . This
simple scaling is shown to break down in long times.~d! Scaling attempt according toA(tw ,tw1t)5t2h/zG(t/tw

m) with m50.89. This
scaling scheme takes into account the fact that the relaxation time increases with slower rate than the waiting times. This scalin
yields a better data collapse than in~c! in long times.
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We now turn our attention to the properties of tempo
correlations in the coarsening process. In the present w
we limit ourselves to the quench from disordered init
states. We consider the two-time spin-autocorrelation fu
tion

A~ tw ,tw1t!5
1

N K (
i 51

N

s i~ tw!s i~ tw1t!L , ~7!

which measures temporal correlation of spin configurati
at two different times during the evolution process. By s
ting the waiting timetw zero, i.e.,tw50, one obtains the
usual nonequilibrium spin-autocorrelation functionA0(t)
[A(0,t) which measures relaxation of the correlation w
the initial state. It is known@27# that A0(t) in typical order-
ing kinetics exhibits a power-law relaxation asA0(t)
;j2l(t) where the exponentl is a new nonequilibrium
exponent. For example, for nonconserved ferromagn
06612
l
k,
l
c-

s
-

ic

Ising models with spin-flip kinetics, which are quenched
the critical temperatureTc , analytic result@28# shows that
l5d (d being the spatial dimension! for one spatial dimen-
sion. For higher dimensionsd52,3, it is found numerically
@29# that l,d for the quench toTc . It is also known@30#
that l5d for the conserved spin-exchange kinetic Isi
model in two dimensions quenched toTc . For our case Fig.
9~a! shows that it relaxes asA0(t);t20.86, which impliesl
.2.0. It is quite probable thatl is exactly equal to the spa
tial dimension of the system, i.e.,l5d52. To the best of
our knowledge, the present model is the only system w
nonconserved kinetics which givesl5d in the spatial di-
mension higher than one.

Shown in Fig. 9~b! is A(tw ,tw1t) versust for various
waiting times. For short time regionst/tw!1, the relaxation
does not depend on the waiting times. This is in accord w
the general expectation that the relaxation in the short-t
region is like the equilibrium one where the time-translati
7-8
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NONEQUILIBRIUM CRITICAL DYNAMICS OF THE . . . PHYSICAL REVIEW E 68, 066127 ~2003!
invariance holds. On the other hand,A(tw ,tw1t) exhibits a
strong waiting time dependence for larget region: the relax-
ation becomes slower for longer waiting times. This no
equilibrium behavior is known as the aging phenomenon
would therefore be very interesting to investigate the p
sible scaling behavior of this aging region. Usually, the tw
time spin-autocorrelation function in the critical quench s
isfies the scaling form@31,32#

A~ tw ,tw1t!5t2h/zG~t/tw!, ~8!

where the factort2h/z is needed sinceA(tw ,tw1t) should
recover the equilibrium critical relaxationt2h/z in the limit
tw→` @thereforeG(0) should be a constant#. The above
scaling implies the relaxation time growslinearly with the
waiting time. However, to our surprise, this scaling for
does not hold for the present system, as shown in Fig. 9~c!.
Instead, we find that the following generalized scaling fo

A~ tw ,tw1t!5t2h/zG~t/tw
m!, m.0.89, ~9!

is obeyed in the aging regime, as demonstrated in Fig. 9~d!.
The value ofm smaller than unity implies that the relaxatio
time increases with a slower rate than the waiting time. T
type of scaling may be termed as a critical subaging beh
ior. This is a unique feature of the present model which
not been observed in other usual nonequilibrium critical
laxations.

Another interesting aspect in the nonequilibrium coars
ing dynamics is the ‘‘persistence’’ of the system. The pers
tence can be quantified as the time dependence of the p
ability that a spin maintains its initial state~i.e., a spin is
never flipped in the case of spin-flip kinetics! up to timet. It
was found for a variety of spin systems quenched toT50
that the fraction of the persistent spins~or the persistent
probability! exhibits a power-law relaxationrp(t);t2u

where the exponentu is another new exponent which is n
related to other exponents characterizing the coarsening
namics. The exponentu has been analytically or numericall
computed. For example, in the zero-temperature dynamic
the ferromagnetic Ising model,u53/850.375~analytic! for
d51 @33#, andu.0.22 ~numerical! for d52 @34#.

In order to compute the density of persistent spins,
first define for each sitei the quantity ni(t)[

1
2 @1

1s i(0)s i(t)# @35#. Initially ( t50), ni(0)51 for all sites. If
the spin at sitei is once flipped at timet, thenni(t)50. Once
it becomes zero, then the value is made unchanged regar
of subsequent flips of the same spins i(t). Therefore the
density of persistent spinsrp(t) is just the number of sites
with ni(t)51 at time t divided by N, i.e., rp(t)
5^( i 51

N ni(t)&/N. Figure 10~a! shows a semilog plot o
rp(t) versust. We first see that there is a very fast relaxati
in the short-time regiont,;50. This early time relaxation
may be closely related to the rapid initial annihilation pr
cess of defects immediately after the quench. After this tr
sient relaxation,rp(t) shows an exponential decay in tim
regiont>;50, as demonstrated in Fig. 10~a!. This exponen-
tial relaxation is due to the dominant contribution of t
loose spins which make ceaseless flips.
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One can thus imagine that if we ignore the flipping of t
loose spins@i.e., if we set permanentlyni(t)51 for the flip
of the loose spins# and if we take into accountonly the flips
involving the defect motion and annihilation, one may obta
a qualitatively different result. We have done this and,
shown in Fig. 10~b!, indeed instead of an exponential dec
we observe a power-law relaxationrp(t)5r01const3t2u

with u.0.17 where the nonvanishing residual densityr0 is
due to the fact that flips of loose spins have not be
counted. In order to obtain the value ofu, we first differen-
tiate rp(t) to remover0 and then plotdrp(t)/dt versust in
a double logarithmic scale. The slope, which should be eq

FIG. 10. ~a! The persistence probabilityrp(t) vs t in a semilog
plot. After a very fast transient relaxation (t,;50), rp(t) exhibits
an exponential decay.~b! Time derivative of the persistence prob
ability for the two different cases. The solid line is the time deriv
tive of the persistence probability obtained when fluctuations
loose spins are ignored in counting persistent spins, and only
flips involving defects are taken into account. Dashed line is
time derivative of the persistence probability obtained when fl
tuations of loose spins are forced to be frozen in the time evolut
These two cases lead to different power-law relaxations. Dotted
is a straight line with slope21.08. The solid line has the slop
21.17. This means thatrp(t) approaches its nonvanishin
asymptotic value with a power-law relaxation for each case.
7-9
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KIM, KIM, AND LEE PHYSICAL REVIEW E 68, 066127 ~2003!
to 2(11u), gives the above value ofu. Also shown in Fig.
10~b! is the persistence in the frozen background of grou
state. It appears thatrp(t) relaxes toward a nonvanishin
value. By differentiating it with respect tot we could esti-
mate the exponentu.0.08.

IV. SUMMARY AND CONCLUDING REMARKS

We have considered the nonequilibrium critical dynam
of the triangular AFI model which possesses an expon
tially large number of ground-states. Quenched to the z
~critical! temperature from a disordered initial state w
many defects, the system relaxes toward the ground-stat
mutual annihilation of point defects. Unique feature of t
dynamics is, due to a macroscopic degeneracy of the gro
state, that the background ground-state configuration
which defects movefluctuatesvia rapid flips of loose spins
This background fluctuations drive the system into one of
ground state configurations belonging to the maximum
tropy sector. At the same time, the fluctuation significan
affects the diffusion property of defect motions. It turns o
that the evolution dynamics is characterized by a sin
dominant length scale, i.e., the mean separation of unifor
distributed defects, and that it is self-similar under the r
caling the distance in terms of this characteristic length sc
We have argued that this length exhibits a genuine subd
sive growth in time, not a diffusive growth with a logarith
mic correction. This subdiffusive nature is attributed to t
fact that the structure of the background-state induces a
croscopic blocking to the defect motion. The dynamics
defects on afixedbackground~i.e., loose spins are frozen-in!
becomes more subdiffusive compared to that in the prese
of background fluctuations.

The nonequilibrium critical dynamics in the present sy
tem shows a unique initial-state dependence. This featu
seen when the dynamics within the ground-state manifol
considered. The time evolution within the ground-state ma
fold proceeds via fluctuations of loose spins. In the pres
work, we have only considered the dynamics within t
d
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te

06612
-

s
n-
ro

via

d-
n

e
-

t
e
ly
-
e.
-

i-
f

ce

-
is

is
i-
nt

dominant ground-state sector, i.e., the sector with the st
densityp52/3. In particular, the initial state we used was t
state with fully ordered sublattice magnetization. The rela
ation from this initial state shows a critical dynamic scali
in the spatial spin-correlation function. The correlatio
length of spin fluctuations exhibits a diffusive growth
time. This kind of initial-state dependence is very unique
that it is absent in the nonequilibrium critical dynamics
typical kinetic Ising models. The only known example whe
similar initial state dependence is observed is the tw
dimensionalXY model quenched toT<TKT .

We also observe that the aging phenomenon exhibited
the two-time spin-autocorrelation function defies a conv
tional scaling scheme based on a simple aging. The two-t
spin correlation satisfies a scaling based on the so-called
aging phenomenon~i.e., the slower growth of the relaxatio
time than that of the waiting time!.

Though not presented here, we find that another frustra
Ising system, the fully frustrated Ising model on a squa
lattice @36# exhibits quantitatively the same critical dynami
as the triangular AFI model@37#. It is well known @19# that
these two frustrated systems share common equilibr
properties. We have seen that the two systems belong to
same universality class with respect to the nonequilibri
critical dynamics as well. It would be interesting to study t
nonequilibrium critical dynamics of other models which h
similar equilibrium properties. The three-state AF Po
model on a square lattice@14,38# is an example of such sys
tems. It would be also valuable to investigate how the n
equilibrium critical dynamics is affected when different d
namic rules such as spin-exchange kinetics are employe
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