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Nonequilibrium critical dynamics of the triangular antiferromagnetic Ising model
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We investigate the nonequilibrium critical dynamics of antiferromagnetic Ising model on a two-dimensional
triangular lattice via dynamic Monte Carlo simulation employing spin-flip kinetics. Macroscopic degeneracy of
the ground state originating from geometric frustration fundamentally affects the nonequilibrium dynamics of
the system. In particular, the defects and the loose dpwhese flip costs no energylay key roles in the
dynamics. The long-time evolution is characterized by a critical dynamic scaling with a growing length scale
£(t). With random initial configurationsé(t) exhibits a subdiffusive growth in timeg(t)~tY# with 1/z
=0.43, while&(t) shows a diffusive growth witlz=2 for the relaxation within the dominant sector of the
ground-state manifold. The nonequilibrium critical dynamics therefore exhibits an interesting initial-state de-
pendence. Persistence and the two-time temporal properties are also discussed.
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[. INTRODUCTION by the critical dynamic scaling of the appropriate spin-
correlation function.
Antiferromagnetic Ising AFl) model on a triangular lat- As discussed in detail below, our simulation resuits

tice, a prime example of periodically frustrated Ising modelsparticular, the subdiffusive growth Igvappear to be in dis-
[1], has remarkable equilibrium properties originating fromagreement with the earlier simulation study of Moeiteal.
frustration caused by the geometry of the underlying lattice[14] on the defect dynamics in the present system. In their
The model has an exponentially large number of groundstudy, Mooreet al. contend that the defects are interacting
state degeneracies, leading to nonvanishing entropy per spufa entropic Coulomb force, and as a result the defect density
at zero temperatutf,3]. Moreover, the ground-state is criti- decays in time ap(t) ~ (Int)/t. This implies that the growing
cal in that the equilibrium spin-correlation functidd(r) length scale exhibits a diffusive growth with logarithmic cor-
shows an algebraic decay with their separatipne., C(r) rection, just as in the coarsening dynamics of the two-
~r~ 7 with n=1/2 [4—-6]. With higher spins, further inter- dimensionalXY model.
esting features have been obser{é@]. Recently there has A close examination on the defect motion seems to offer a
been a renewed interest on the triangular AFI maggéth different viewpoint on the defect dynamics. We observe that
elastic distortiong9—12] or a staggered fielfl3] to lift the  the defect motion is highly correlated with fluctuations of the
infinite degeneragyin the context of nonequilibrium glassy loose spins; that is, depending on the nearby spin configura-
dynamics which may offer insights into the nature of thetions, defects are not allowed to move in arbitrary directions
liquid-glass transition. but are constrained to take only limited number of directions.
One may expect that this macroscopic ground-state deMoreover, the fact that the RMS displacement of an isolated
generacy would crucially affect the nonequilibrium evolution defect exhibits the same subdiffusive behavior as the grow-
process followed by a quench to the zécoitical) tempera-  ing length scale suggests that defects perform a kind of re-
ture. In this work, we aim to characterize this nonequilibriumstricted random walk in th@bsenceof mutual interaction
critical dynamics of the triangular AFI model using a dy- force. We believe that it is this correlated motion of defects
namic Monte Carlo simulation method with spin-flip kinet- with loose spins in the fluctuating background configurations
ics. We find that the system exhibits a unique coarseninghat gives rise to the observed subdiffusive growth. We also
dynamics due to an exponentially large number of degenerdind that the defect motion becomes more subdiffusive when
cies and criticality of the ground-state. We first consider thefluctuations of loose spins are forced to be frozen-in.
dynamics evolved from a random disordered initial state in  Starting from a defect-free initial state and quenching the
which there exist many localizegoint) defects. In this situ-  system to the zero temperature, one can look at the dynamic
ation, the coarsening process is governed by defect dynamievolution within the ground-state manifold. It is well known
on the fluctuating background of ground-state configurationd.15] that a useful way of classifying the degenerate ground-
These ground-state fluctuations are mediated by the loosstates is to map each ground-state to its corresponding dimer
spins whose flips require no energy cost. The coarseningonfiguration. Strings of dimers can be obtained from an
manifests a single growing length scale. In particular, theoverlap of one dimer configuration with the given reference
average defect separation and the spin-correlation lengttsee below for detai)s The number of ground-states belong-
show the same subdiffusive growth in tinR{t)~t¢ with ing to a given string density has been exactly comp (i
¢~0.43. Moreover, the root-mean-squafeMS) displace- and hence the ground-state manifold is divided into sectors
ment of an isolated defect also gives the same subdiffusiveach of which has a unique string density. The dynamics in
growth. In addition, the coarsening exhibits a dynamic selfthis case proceeds only via flips of the loose spins. Therefore,
similarity under the spatial rescaling, which is demonstratedhe initial state without the loose spin cannot relax and the
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dynamics becomes trivially nonergodic. Also the string dentive energy cost is always rejected. In this work, we are
sity is shown to be conserved during the time evolution.considering the two different initial configurations. The first
Hence the evolving states should be confined within the vergne is the random initial configurations in which many de-
sector to which the initial state belongs. The dynamics withinfects are generated. For this initial state, the time evolution is
the ground-state manifold is therefore nonergodic. In thecharacterized by the annihilations of defect pairs. The other
present work, we have focused on the dynamics within ondnitial state is one of the ground-states which belong to the
particular sector which has the string dengity 2/3. This  dominant ground-state sector. We use the lattice with linear
sector is dominant over other sectors in its number ofdimensionL=23000 for the case of random initial state, and
ground-states: it is the maximum entropy se¢ti@8]. In fact,  L=1020 for that of ordered initial state employing periodic
starting from a random disordered state, the system evolvdsoundary conditiongthe total number of spins is given by
into this dominant sector. The relaxation within this sectorN=LXL).

also shows a critical dynamic scaling property. But, in con-

trast to the dynamics from random initial state with defects, 1. SIMULATION RESULTS AND DISCUSSION

the correlation length of spin fluctuations grodifusivelyin o _ _ _

time: &(t) ~t*2 The nonequilibrium critical dynamics in the The system can be d_lyldgd into th_ree sublatt_|ces. Itis well
present system therefore exhibits an initial-state dependenckown [4] that the equilibrium spatial correlation between
A similar initial-state dependence has been recently observe¥Pins separated by the distancerhich belongs to the same

in the nonequilibrium critical dynamics of the two- Sublattice exhibits an algebraic decay withi.e., Ceq(r)
dimensionaX Y model[16]. However, one distinct feature in ~T~ 7 with #=1/2. We thus first consider the nonequilib-
the present system is that the growing length scale exhibitdum spatial spin correlation in theamesublattice[17]:

power-law growth for both disorderd@vith defect$ and or- L

dered (without defecty initial states with two different Cr = — (Do (t 3
growth exponents. In contrast to the case of the two- (. N/3 .21 i (b)), ®
dimensionalXY model, there is no logarithmic correction in

the present system. whered;(t) is the spin at sité at timet which is measured

We also discuss nonequilibrium properties of aging androm the time of the quench and - -) denotes an average
persistence. Particularly interesting is the aging dynamics exever different initial states. In the simulation, thedepen-
hibited by the two-time spin-autocorrelation function. In dence ofC(r,t) for a given timet is measured along the
usual kinetic Ising models, the relaxation timeis observed three major axes of the triangular lattice witk 3na, where
to grow linearly with the waiting time,,; 7,~t,,. Butinthe Nn=0,1,2... anda, is the lattice spacing. The final result of
present system, the relaxation becomes slower, leading to@(r,t) for a given sublattice is the average of these three
sublinear dependence on waiting time;~tf with u values.
~0.89. Our simulation shows essentially the same results for

After introducing the model and simulation method, we three different sublattices and the presented result in &y. 1

discuss details of the above statements. The paper ends wighthe averaged result over three sublattices for better statis-
summary and Conc'uding remarks. tics. This dynamic Spin—COI’re|ati0n function reveals the exis-

tence of a growing length scale with time. Due to the criti-

cality of the ground-state one may expect that the dynamic

spin-correlation function exhibits a critical dynamic scaling
The Hamiltonian of the AFI model on a triangular lattice of the form

in two dimensions is given by

Il. THE MODEL AND SIMULATION METHOD

C(r,t)=r""F(r/&t)), n=1/2. 4

H=JZ aioj, (1) In order to test this scaling, we first extract a length scale
W £(t) from C(r,t)=r"C(r,t) with »=1/2 for a given time,
wheres; =+ 1 is the Ising spin at site J>0 the interaction ~Which is defined a€(r = £(t),t)=C,, C, being an arbitrary
strength(we setJ=1 throughout the papgrand(ij) de- constant. Here we tak€,=0.2. Shown in Fig. (g) is the
notes the nearest-neighbor pairs with the coordination numplot C(r,t) versus the rescaled distanci(t) for different
ber being equal to six in a triangular lattice. We performtimes t=10x2" Monte Carlo stepg®ICS), with n
dynamic Monte Carlo simulations on the model subjected to=2,3, . .. ,13. Allcurves are collapsed onto a single master
T=0 quench using a single spin-flip Metropolis dynamicscurve. Worse collapse in the rescaled distanG&t) larger
with the flip-probability than ~2 seems to be due to the fact that the multiplying
factorr” in the scaling scheme has an effect of magnifying
0 for SE>0 5 the small correlation region in the long distances. As shown
1 for SE<QO, @ in Fig. 1(b), the nonequilibrium spin-correlation lengét)
exhibits a power-law growth in time a&t)~t'2. The slope
where 6E is the energy difference between before and aftein Fig. 1(b) gives 1£2=0.43(1)[z=2.33(5)].
the flip of a randomly chosen spin. Note that since we are In order to understand better this subdiffusive coarsening
considering zero-temperature quench only, the flip with posibehavior, we focus on the structure of the ground-state and
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giving the entropy per spis=(In 2)/3=0.231 (throughout
o6 ™, - CB0MGS ] we set the Boltzmann constant unityThe actual entropy

160 mgg density has been analytically calculated by Wanhras

05 \ 2 t=640 MCS
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Y © 1=20480 MCS
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\ v 1=81920 MCS

"C(x,t)

which is larger than the above estimate due to the existence
of further freedon 2] for the spin flip.

Since the lattice geometry forbids a unit plaquette to have
only two unsatisfied bonds, the configuration of the lowest
excitation in each unit plaquette is that in which all three
bonds are unsatisfied.e., all three spins with up or down
‘ simultaneously This unit plaquette serves as a localized
2 3 lowest excitation, a point defef18]. It is easy to see that a
single defect alone cannot be annihilated by flip of one of the
— spins forming that defect. Annihilation of defects occurs in

O pairs. Hence a “charge” can be assigned to the defect. The
e positive charge defect can be identified witp-plaguette
.l | (i.e., triangle pointing upwandvith all three spins having the

same sigriregardless of up or dowrand the negative charge

defect with down-plaquette(i.e., triangle pointing down-
ward) with all-the-same-sign spins. As we see shortly below,

o the coarsening process here involves motion and annihilation

& of these defectéwith opposite charggesvhich are created in

o . a random disordered initial state. A defect can move one unit
-l o e | lattice spacing by the flip of one of the spins belonging to
o’ e that defect. The motion of a defect da®st cost energy. The
energy is lowered only via annihilation of defects.

In addition to the presence of the point defects, there ex-
- ists another object called the loose spl®] which plays an
(b) t important role in the coarsening dynamics. The loose spin is
defined as the spin whose six nearest neighbors are changing
their signs alternatinglysee Fig. 2. Hence the loose spin
ian be flipped without energy cost. Of course its existence is
C
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o
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FIG. 1. (@) A scaling collapse forC(r,t) using a critical dy-
namic scalingC(r,t)=r""F(r/£(t)) with »=1/2. This scaling
property demonstrates that the evolution process possesses a
namic self-similarity when spatial distance is rescaled with respe
to the nonequilibrium spin-correlation lengiit) which is defined
as C(£(t),t)=0.2 with C(r,t)=r7C(r,t). (b) Growth of the spin-
correlation length(t) in a double-log plot o&(t) vst. The line on
the left (circles is for the case in which the background configura-
tion is fluctuating, and the one on the rigbguareyis for the case _ .
in which the background state is frozen. Dotted lines are straighP(t) and_ the exces_s_ e_nerg&E(t)=E(t)—EG with Eg .
lines with slopes 0.43 and 0.18. Note that in the case of frozen_ —1 being the equilibrium ground-state energy per spin.

background, the lengtté(t) is measured fort=5120, 10240, Ihey are shown to be proportional to each other, as they
20480, 40 960, 81 920 MCS due to slower growth. should be in the zero-temperature quench. Figure 3 shows

that they exhibit a power-law relaxatiohE(t)~ p(t)~t~¥
lowest excitatior(defec} in the system. Due to the geometry with =0.8§2). This relaxation is due to annihilation of
of the triangular lattice, the ground-state is characterized by defects. Note that the relaxation of the defect density is re-
spin configuration in which each unit triangular plaquettelated to the growing length scalgt) extracted from the
inevitably has one and only one “unsatisfie(ferromagnet-  dynamic spin-correlation function agt)~ £ 2(t), as dem-
ic) bond. It is then easy to see qualitatively why there musbnstrated in the inset of Fig(&. This result implies that the
be exponentially large number of degeneracies in the groundspin-correlation lengthé(t) is proportional to the average
state[2]. Let us first denoter, as a spin belonging to the separationd(t) between defects singg(t)~d2(t) in two
sublatticea=A,B, andC. Note then that six nearest neigh- spatial dimensions, assuming uniform distribution of defects.
bors of any spino, cannot belong to the sublattide® We  Therefore we may state that the coarsening process is gov-
first make the signs of ali-x's and og's opposite. This as- erned by the single length scale which is the growing sepa-
signment automatically leads to a ground-state regardless o#tion between defects due to their mutual annihilation.
signs of spinso¢ since the flip ofo does not alter the We point out that the above subdiffusive domain growth
energy. This leads to the degeneracy®2exd(N/3)In2], is notin accord with a recent simulation work of Moore

Pﬁimately connected to the infinite degeneracy of the
round-state. Flips of loose spins provide incessant fluctua-
tions in the background ground-state configurations. As dis-
cussed in detail below, these “vacuum” fluctuations are
strongly correlated with defect motions.
Shown in Fig. 8a) is the relaxation of the defect density
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FIG. 2. A negative charge defect and its nearby spin configura-
tion which is extracted from a simulation run. Filled and open
circles represent up and down spins, respectively. Encircled are th
loose spins which can be flipped without energy cost. Fluctuation of o5}
the background state is mediated by flips of these loose spins. Whe
either spin 2 or spin 3 is flipped, the defect moves horizontally to
the right or along the direction (23) downward, respectively, o4l
whereas the defect is not allowed to mdte the lefy by the flip of
spin 1 which requires creation of defects. However, if the loose spin
which is one of the nearest neighbors to spin 1, is flipped, then the ;|
flip of spin 1 lets the defect move to the left. Hence for this case the
background fluctuation opens up the previously blocked path of the
defect. The opposite event occurs for spin 2 where the flip of the  ,|
loose spin(nearest to spin 2) blocks the previously allowed path of . oooomxs O °
the defect. On average, the loose spin fluctuations enhance the dit
fusion of defects compared to the case of frozen background.

p(t)

(b§'11o" 0 0 ; 0 10 10°

et al.[14]. They claim that the relaxation of the defect den- g5 3. (8 The relaxation of the defect densip(t) (dashed
sity exhibits a logarithmic correction to the diffusive behav- line) and the excess energy densg(t) (solid ling) for the two

ior as p(t)~(Int)/t. Their interpretation on their simulation cases of fluctuating and frozen background ground-state. Slower
results is that the defect motion in the present system is execay in long times is for the latter case. Dotted lines are the
actly the same as that observed in the coarsening of the tw@traight lines with slopes-0.86 and—0.56. Inset: A double log
dimensionalXY model [20—22. In particular, they assert plot of p(t) vs £(t). The filled circles are the simulation data, and
that the defects interact with Coulomb force and the mobilitydotted is the straight line with slope2. (b) A semilog plot oftp(t)

of defects depends on the distance between them. The on¥gt. It shows a continuous upward curvature over almost the entire
difference is the origin of the Coulomb force: it is argued totime region.

be entropic rather than energetic since the motion of defects

does not cost energy. With our simulation data, we have trie finciple we cannot rule out the possibility that our data
9y ' .~ Cross over to a straight line for-81 920(MCS), it would be

. . -Cl0Mn extremely odd scenario that the defect density in this
as p(t)~(In )/t by plotting tp(t) against Irt. As shown in = \q46| shows a power law over almost five decades of time
Fig. 3(b), instead of a straight line, we find that the plot scaie and then change its behavior for longer times. At any
shows a considerable upward curvature in almost the entirgyte in our simulation time scales, the power-law decay ap-
simulation time up td=_81920(MCS). This is in contrast to  pears to be far superior to the power law with logarithmic

the result of Mooreet al, which claims that there exists a correction.

time region of about one and half decade with a straight line  We find that the actual defect motion is highly correlated

fit. But we do not see such a regime in our simulations. It iswith its local environment. This is one crucial feature of the

not clear to us what causes this discrepancy between the twdefect dynamics in the present system, which we believe to
simulation results. One comment we can make is that sincbe the microscopic origin of the observed subdiffusive dy-

we are dealing with a dominant multiplicative correction fac-namics of defects. Figure 2 shows a single defect and its
tor, the correction fit usually should work for almost entire local environment which is extracted from a real simulation

time region. The result of Mooret al, showing only a one run. We observe that among six possible directions of defect
and half decade of logarithmic correction fit after three andmotion there exist some directions along which the motion of
half decades of something else, seems very unusual in theefect is not allowed at least momentarily until neighboring

sense. We even do not see such a regime in our simulatiagpins provide favorable environment by spin flip. This tem-

but rather find a continuous upward curvature. Although inporary blocking of defect motion is due to the fact that a spin
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FIG. 4. Mean-square displacemeRi(t) vs timet for an iso-

lated defect for the two cases of fluctuating and frozen background FIG. 5. chllng collapse of Fhe spin-correlation functior, t)
ground-state. The solid line with larger slope is obtained for theWhen fluctuations of loose spins are completely suppressed. The
me critical dynamic scaling as in Fig(al holds in this slow

former case. Dotted lines are the straight lines with slopes 0.86 an . . RANSR
0.50. ynamics as well. But the scaling function is distinct from the one

shown in Fig. 1a).
flip leading to the defect motion along the blocked dlrectlon,[ion C(r.t) in this situation. As shown in Fig. 5, we find that

requires creation of defect pairs, which is forbidden in theC(r t) shows the same critical dynamic scaling as in @
zero-temperature kinetics. Note that this microscopic blockbut’ with a much smaller growth exponentC(r t).

ing effect is absent, for example, in the zero—temperature:rfnG(r/tl/z) with 1/z=0.18. As for the defect relaxation
coarsening of one-dimensional ferromagnetic Ising mode|, . find that the defect density relaxes&$)=t" " with ¢ '
where a defectdomain wal) performs free random walk, —g 56, Thus not only the dynamics slows down but also it
which exhibits a diffusive domain growth. In connection pecomes more complicated: it is characterized by appearance
with this feature, we have calculated the time dependence qff the multiple length scales. Further study is needed to re-
the mean-square displacement of defects in the low-densiyolve this puzzling nonproportionality among these length
limit, i.e., when defects are far away from one another. Wescales in the absence of loose spin fluctuations.

find thatR*(t) ~t# with 8=0.86, as shown in Fig. 4. There-  phenomenologically one may imagine that the fluctua-
fore the RMS displacement exactly corresponds to thejons of ground-state configurations among different degen-
growth law of interdefect separations and also the scale dfrate states supply some background potential with spatial
domain size£(t). This provides a strong numerical evidence dependence. We have seen that these fluctuations cause a
that defects which are sufficiently isolated perform restricteqnicroscopic blocking on the motion of defects. In general,
(subdiffusive random walks, which is most probably due to one thus might represent this kind of restricted potential as
the fluctuation of ground-states. If, on the other hand, wesome spatio-temporally correlated noise upon the motion of

suppose that a kind of entropic Coulomb force is in actionjafacts as followsdr (t)/dt=f(r t) wherer(t) is the posi-
here for the motion of defects, the local motion of a suffi-

ciently isolated defect should be at least diffusive, whichliO" Vector of the defect agdg/r,t/) is a SPatl?temp(?rally
then is inconsistent with our result above. Therefore we becorrelated noise witlf(r,t)- f(r',t"))=F(|r—r’,|t—t"]).
lieve that the consistent picture on the defect dynamics i4f we suppose thaf” is replaced by a simple uncorrelated

that defects perform a restricted random-walk motion due tavhite noise, then we would get a pure diffusion. Since the
their correlated motion with loose spins, not due to theirnumerical result from Monte Carlo dynamics shows a sub-

presumed Coulombic interaction. diffusive behavior, we expect that some spatiotemporal cor-
We further point out that the ground-state fluctuations aclelation in the noise should be taken into account. This is
tually facilitate the motion of defects; that is, the dynamicsalSO reasonable considering the fact that the zero temperature
becomes much slower in the absence than in the presence igfthe critical point with power-law correlations in the spin
background fluctuations of loose spins. We let the backfluctuations. Since we do not know of any analytic methods
ground ground-state configuration fixed during the coarsenof solving the above effective equation for the motion of an
ing and let the defect motion occur by flipping the spins onisolated defect, we cannot give any concrete functional form
the triangular plaquette pertaining to the defects. In this situ0f 7. The full set of higher moments of the displacement
ation, the RMS displacement of a defect in the low-density(r —r’) may be needed to determine these exponents.
limit showsR?(t) ~t# with 8=0.50, as shown in Fig. 4. We We have also considered the relaxatwithin the ground-
therefore see that fluctuations of ground-state configurationstate manifold. Before we discuss the dynamics, we briefly
have the effect of relatively enhancing the diffusion of defectdescribe the method of dimer coverind$] which provides
motion compared to that in the absence of the fluctuationsan effective way of classifying the macroscopically large de-
We have also calculated the dynamic spin-correlation funcgenerate ground-states. In a ground-state configuration, one
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draws a line(dimern such that it intersects every unsatisfied
bond from one center to the other of the two unit plaquettes
sharing this unsatisfied bond. Then each unit plaquette in ¢
ground-state configuration has only one dimer. By the same
procedure, one can obtain another dimer covering for a
“standard” ground-state. This standard ground-state is cho-
sen to be the “stripe” state in which every spin along each
horizontal direction has the same sign, but the sign is alter-
nating along the vertical direction. For this stripe state the
dimer is then placed vertically on every horizontal bond.
Superposing a dimer configuration onto the standard one
one obtains a string configuration. The ground-states can b
classified by their string density which is defined ps
=N,/L whereNg is the number of strings and linear di-
mension of the system. The ground-states can be arranged . . ,
into different sectors and each sector is characterized by ﬂ}(?o nFl(?n' 2.1/)\ g{ﬂ?snitizti;vs't?hgu'.'é'oosfifig Z‘éﬁ';?,tfcg/én (aogpneerflza-

) . . =1).
?tggl%gtfgs;ygeﬂsﬁ?g(%;oj?f /-I\Sl;?rt?\?( g)e I[Oxfgg;gbt:irt]gart]jﬁftor'circles are loose spings well as the string densify=2/3 (see the

. . h . ., text for detai). The time evolution from this state is driven by

ber of ground-statgsn a given sector with the string density fluctuations of loose spins.
p has been exactly calculated by a transfer-matrix method as
[13]

C(r,t) for a given timet relaxes toward a nonzero value at
pri2 large distances which is the square of sublattice magnetiza-
S(p)=(2/m) fo In(2cosx)dx. (6)  tion, m2(t). This saturation sets in at larger distances for late
times; that is, the correlation leng#{t) of spin fluctuation

We thus know that the sector with nonzero string density ha§foWs in time, which is the only growing length scale in the
a macroscopic number of ground-states: the degeneracy los a>_<at|on. This rellaxatlon.also exhlb!ts a critical dynamlc
its extensivity only forp=0. Stripe state is an example of Sc@ling when the distance is rescaled in term&(ef, which
such zero-entropy states. The entropy functigp) has the IS dem_onstrated. in Fig.(B) for the correzlatlon funct|on.for
maximum atp=2/3 sinceS’(p)=In[2cospm/2)]=0 at p the spin _quc_tuguorCF(r,t)E[C(r_,t)—ms(t)_]._The scaling
=2/3 andS’(p) = — (w/2)tan(p/2)<0 for 0<p=<1 where func_tlon is distinct from that for d|s_0rdered initial state. Inset
'=d/dp. The maximum entropy of(p) at p=2/3 is noth- qf Fig. Y(b_) shovv_s thgt the corre!atlgn Iength of spin flyctua—
ing but the entropy densitg derived by Wannier, Eq(5).  ton exhibits a diffusive gro_vvth in time, i.eg(t) ~t1? Wlth
Considering the exponential dependencebaf the degen-  1/z=0.51. One can also directly obtain the dynamic expo-
eracy, this implies that the sector wifh=2/3 dominates in Nentz from the relaxatlpp of the suplatuce magnetization
its number of ground-states. Note also that the loose spinds(t). ~From the critical ~dynamic scaling C(r,t)
are always located asolatedkinks on a string. =r-7Q(r/&(t)), the scaling functio®(x) should behave as
Now we discuss the relaxation dynamics within the Q(X)~x” for largex. This givesmZ(t)~ ¢ (t)~t~ "2 In-
ground-state manifold. In particular, we have taken initialset of Fig. 7a) shows a power-law relaxation afZ(t). The
state as the one shown in Fig. 6. We consider the zeromeasured slope-0.25 gives the dynamic exponer#=2.0.
temperature quench from this state. The string density fofhis dynamic exponent, indicating a diffusive growth, is
this state ign=2/3. Thus it belongs to the maximum entropy smaller than the corresponding one for random disordered
sector. The density of loose spins is also given by 2/3. Eachnitial configuration. Therefore we observe that there exists
sublattice in this state has a long-range order with the suban intriguing initial-state dependence in the nonequilibrium
lattice magnetizatiom,=1. Since the initial state is defect critical dynamics of the present system. A similar initial-state
free, the time evolution from this state does not proceed viglependence has been obsery&d] in the nonequilibrium
mutual annihilation of defects. As observed from Fig. 6, thecritical dynamics of the two-dimensionaXY model
relaxation must proceed via flip of loose spins. Therefore thgluenched to any temperature on the critical line of tempera-
initial defect-free ground-state without loose spins cannot retures 0<T<Tyy, Txt being the Kosterlitz-Thoules&T)
lax at all; the relaxation is trivially nonergodic. The stripe transition temperature. In this case, while the nonequilibrium
state is such an example. Once a loose spin is flipped, thetorrelation lengthé(t) exhibits a diffusive growthé(t)
its six nearest neighbors cannot relax due to nonzero energyt' with z=2 for an ordered initial state without free vor-
cost for the flip. Another loose spin which is not a nearestices, £(t) grows in time ast(t)~ (t/Int) for a disordered
neighbor to the flipped loose spin should be flipped for fur-initial state with free vortices.
ther relaxation. It would be then crucial that the once-flipped Another related quantity we attempted to monitor is the
loose spins be selectedjain since the relaxation would be time dependence of the loose spin dengityt) which is
frozen without these repeated flips. shown in Fig. 8. Its relaxation is characterized by a power-
Shown in Fig. Ta) is the dynamic spin-correlation func- law approach to the nonvanishing asymptotic vaiyé-)
tion C(r,t) where spins belong to the same sublattice.=0.29 for an ordered initial statgep,(0)=2/3] of Fig. 6:
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FIG. 8. Relaxation of the loose spin densityt) for both cases
of the initial state of Fig. &solid line) and random disordered initial
os | -® | states with defect¢dashed ling For both caseg,(t) approaches
1Y : toward the same asymptotic valpg)=0.29.

&
S exponents are probably new nonequilibrium exponents in the
. ' triangular AFI model. The same asymptotic valuepgfe)
03l & . 1 for two different types of initial states indicates that random
oy , initial states evolve toward the dominant sector which has
maximum entropy, i.e., the sector with the string dengity
=2/3. Thus the sector with string densips~=2/3 has the
average loose spin densjiy=0.29. This asymptotic value is
perhaps related to the entropy of the ground-state. It would
be interesting to verify this possibility analytically. Note also
from Fig. 6 that it is not possible to increase or reduce the
‘ ‘ ‘ ‘ number of strings by flips of loose spins. Thus the evolving
o ° 1 2 G 3 4 5 states alwa_ys_ _Iie within 'ghe same sector. This fe_ature _should
hold for an initial state with a general string dengityin this
sense, the time evolution within the ground-state manifold is
C(r,t) for the dynamics within the ground-state manifold from an a nonergodl_c c_iynamlcs_._ Recent works h_ave considered an
initial state shown in Fig. 6. The times are giventsy40x 2" MCS entropy_vanlshlng trgn_smon from the dommant_ sector Fo the
with n=1,2, . . . ,8. Thespin correlation at long distances is equal Z&r0-String sector within the ground-state manifold which is
to m2(t) which decays in time. Note that the distance over whichinduced by an external perturbation such as lattice compres-
C(r 1) relaxes to its asymptotic value becomes larger with increasSion[12] or staggered fielff13]. This entropy vanishing tran-
ing time, which means that the correlation length of the ghio-  Sition is similar to that observed in the random energy model
tuation [shown in(b)] grows in time. Inset: Relaxation of the sub- and other so-called discontinuous spin-glass models, which
lattice magnetization square?(t). The dotted line is a straight line may have significant implications to the nature of the liquid-
with slope —0.25. Using a scaling argument3(t)~t~7?and  glass transitioj23].
=1/2 we estimate the dynamic exponert2.0. (b) A scaling plot In connection with the nonergodic relaxation within the
for Cg(r,t). The nonequilibrium dynamics within the dominant ground-state manifold, it is known that the deposition and
sector (see the tejtfrom the initial state shown in Fig. 6 also evaporation kinetics ok-mers k=3) on one-dimensional
satisfies a critical dynamic scaling property. Inset: Growth of thelattice is characterized by the break up of the entire phase
correlation lengthé(t) for the spin-fluctuation correlation function space into the exponentially large number of sectors in the
Cr(r,t)=C(r,t)—mi(t). Dotted line is a straight line with slope steady stat§24]. Each sector has a unique value of the so-
0.51. called irreducible string which is a conserved quantity during
e ) . the time evolution25,26. Hence the dynamics is strongly
pi(t)=pi(*) + At with «=0.98 (A is a positive constant  snergodic since sectors are mutually disconnected. More-
We also find that starting frqm a random disordered _stat%ver, it is shown numerically that the spiparticle autocor-
with defectsp(t) shows a different power-law relaxation rg|ation in a sector shows either a power-law or a stretched
toward/ the same asymptotic valuep(*): pi(t)=pi(*)  exponential relaxation, the power-law exponent being sector
—Bt™* with «’=0.75 andB being a positive constant. The dependent. It would be therefore very interesting to examine
slower relaxation seems to be due to the presence of defecthe interesting possibility that the dynamic exponzihar-
So far there is no known relationship between the growthacterizing the correlation of spin fluctuations may differ from
exponent and the above two exponesmtanda’. These two  one sector to another in the present system.

&1
®

r'Cy(r.t)

0.

F 0t=320 MCS
0 t=640 MCS
© t=1280 MCS
2 t=2560 MCS
<t=5120 MCS

FIG. 7. (a) Equal-time sublattice spin-correlation function
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FIG. 9. (8) Relaxation of the spin-autocorrelation functidg(t). Solid line is a straight line with slope 0.8¢b) Relaxation of the
two-time spin-autocorrelation functiorA(t,, ,t,+7) for various waiting times.(c) Scaling attempt according t(t,,,t,+7)
=7~ 7%g(7lt,). This scaling scheme is based on the assumption that the relaxation time is linearly proportional to the waitipg Tinie
simple scaling is shown to break down in long timé&s. Scaling attempt according t(t,, ,t,+ 7) =7~ 72G(7/t*) with «=0.89. This
scaling scheme takes into account the fact that the relaxation time increases with slower rate than the waiting times. This scaling scheme
yields a better data collapse than() in long times.

We now turn our attention to the properties of temporallsing models with spin-flip kinetics, which are quenched to
correlations in the coarsening process. In the present workhe critical temperaturd, analytic resulf28] shows that
we limit ourselves to the quench from disordered initial \ =d (d being the spatial dimensipfor one spatial dimen-
states. We consider the two-time spin-autocorrelation funcsjon. For higher dimension$= 2,3, it is found numerically

tion [29] that A <d for the quench tdl.. It is also known[30]
that A\=d for the conserved spin-exchange Kkinetic Ising
N . . . .
A 1 E 7 model in two dimensions quenchedTg. For our case Fig.
(bt 1) = =~ 7i(tw)oi(ty+7) |, () 9(a) shows that it relaxes a(t)~t~ %8 which implies

=2.0. It is quite probable that is exactly equal to the spa-

which measures temporal correlation of spin configurationdial dimension of the system, i.e\=d=2. To the best of

at two different times during the evolution process. By set-our knowledge, the present model is the only system with
ting the waiting timet,, zero, i.e.,t,=0, one obtains the nonconserved kinetics which gives=d in the spatial di-
usual nonequilibrium spin-autocorrelation functigky(t) ~ mension higher than one.

=A(0t) which measures relaxation of the correlation with ~ Shown in Fig. @) is A(t,,,t,,+ 7) versusr for various

the initial state. It is knowri27] that Ay(t) in typical order-  waiting times. For short time regionst,, <1, the relaxation

ing kinetics exhibits a power-law relaxation a&y(t) does not depend on the waiting times. This is in accord with
~ & Mt) where the exponenk is a new nonequilibrium the general expectation that the relaxation in the short-time
exponent. For example, for nonconserved ferromagneticegion is like the equilibrium one where the time-translation
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invariance holds. On the other hart,, ,t,,+ 7) exhibits a 10
strong waiting time dependence for largeegion: the relax- ;
ation becomes slower for longer waiting times. This non- 107
equilibrium behavior is known as the aging phenomenon. It
would therefore be very interesting to investigate the pos- 10
sible scaling behavior of this aging region. Usually, the two-
time spin-autocorrelation function in the critical quench sat- _10° ¢
isfies the scaling forni31,32 =

Aty ty+ 1) =1 7%G(7lt,), 8

where the factorr~ 77 is needed sincé(t,, ,t,,+ ) should
recover the equilibrium critical relaxatior 7% in the limit 10° |
ty— [therefore G(0) should be a constantThe above
scaling implies the relaxation time grovigearly with the 107 = o ™ 200
waiting time. However, to our surprise, this scaling form (a) t

does not hold for the present system, as shown in Fig). 9
Instead, we find that the following generalized scaling form ~ 1©°

Aty ty+7) =7 "2G(7/t%), u=0.89, (9) 10"

is obeyed in the aging regime, as demonstrated in Kid)j. 9
The value ofw smaller than unity implies that the relaxation
time increases with a slower rate than the waiting time. Thisg
type of scaling may be termed as a critical subaging behav<,"
ior. This is a unique feature of the present model which hass
not been observed in other usual nonequilibrium critical re- 107 |
laxations.
Another interesting aspect in the nonequilibrium coarsen- 1= |
ing dynamics is the “persistence” of the system. The persis-
tence can be quantified as the time dependence of the prok

10% |

-3 -

ability that a spin maintains its initial stai@e., a spin is " e - s

never flipped in the case of spin-flip kinetiagp to timet. It (b) t

was found for a variety of spin systems quenched to0 _ N ) )
that the fraction of the persistent spilisr the persistent FIG. 10. (3) The persistence probabilify,(t) vst in a semilog

plot. After a very fast transient relaxatiot<{ ~50), p,(t) exhibits

an exponential decayb) Time derivative of the persistence prob-
ability for the two different cases. The solid line is the time deriva-
¥i§/e of the persistence probability obtained when fluctuations of

ted. F le in th t ¢ d . 2 lgose spins are ignored in counting persistent spins, and only spin
computed. For eéxampie, In the zero-lemperature dynamics G ps involving defects are taken into account. Dashed line is the

the ferromagnetic Ising mode#)=3/8=0.375(analytig for  ine derivative of the persistence probability obtained when fluc-
d=1 [33], and §=0.22 (numericaJ for d=2 [34]. _ tuations of loose spins are forced to be frozen in the time evolution.
In order to compute the density of persistent spins, Werhese two cases lead to different power-law relaxations. Dotted line
first define for each sitei the quantity ni(t)=3[1 s a straight line with slope-1.08. The solid line has the slope
+0i(0)o;(t)] [35]. Initially (t=0), n;(0)=1 for all sites. If ~ —1.17. This means thap,(t) approaches its nonvanishing
the spin at site is once flipped at timg thenn;(t)=0. Once  asymptotic value with a power-law relaxation for each case.
it becomes zero, then the value is made unchanged regardless
of subsequent flips of the same spif(t). Therefore the One can thus imagine that if we ignore the flipping of the
density of persistent spings,(t) is just the number of sites |oose spindi.e., if we set permanently;(t)=1 for the flip
with ni(t)=1 at time t divided by N, ie., py(t) of the loose spinisand if we take into accourinly the flips
=(=N,n;(t))/N. Figure 1@a) shows a semilog plot of involving the defect motion and annihilation, one may obtain
pp(t) versust. We first see that there is a very fast relaxationa qualitatively different result. We have done this and, as
in the short-time region<~50. This early time relaxation shown in Fig. 1(b), indeed instead of an exponential decay
may be closely related to the rapid initial annihilation pro-we observe a power-law relaxatign(t) = po+ const<t™?
cess of defects immediately after the quench. After this tranwith #=0.17 where the nonvanishing residual dengigyis
sient relaxationp,(t) shows an exponential decay in time due to the fact that flips of loose spins have not been
regiont=~50, as demonstrated in Fig. @D This exponen- counted. In order to obtain the value @f we first differen-
tial relaxation is due to the dominant contribution of thetiate p,(t) to removep, and then plotp,(t)/dt versust in
loose spins which make ceaseless flips. a double logarithmic scale. The slope, which should be equal

probability) exhibits a power-law relaxatiorpp(t)~t“’
where the exponerd is another new exponent which is not
related to other exponents characterizing the coarsening d
namics. The exponerit has been analytically or numerically
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to —(1+ 6), gives the above value @ Also shown in Fig. dominant ground-state sector, i.e., the sector with the string
10(b) is the persistence in the frozen background of grounddensityp=2/3. In particular, the initial state we used was the
state. It appears thaiy(t) relaxes toward a nonvanishing state with fully ordered sublattice magnetization. The relax-
value. By differentiating it with respect tbwe could esti- ation from this initial state shows a critical dynamic scaling

mate the exponeri=0.08. in the spatial spin-correlation function. The correlation
length of spin fluctuations exhibits a diffusive growth in
IV. SUMMARY AND CONCLUDING REMARKS time. This kind of initial-state dependence is very unique in

) o N _ that it is absent in the nonequilibrium critical dynamics of

We have considered the nonequilibrium critical dynamicsyypical kinetic Ising models. The only known example where
of the triangular AFI model which possesses an exponengimilar initial state dependence is observed is the two-
tially large number of ground-states. Quenched to the zergjmensionalXyY model quenched tF<Tyr.
(critical) temperature from a disordered initial state with \we also observe that the aging phenomenon exhibited by
many defects, the system relaxes toward the ground-state Ve two-time spin-autocorrelation function defies a conven-
mutual_ an_nihilation of point defe_cts. Unique feature of thetjgnal scaling scheme based on a simple aging. The two-time
dynamics is, due to a macroscopic degeneracy of the groundpin correlation satisfies a scaling based on the so-called sub-
state, that the background ground-state configuration ogging phenomenofi.e., the slower growth of the relaxation
which defects movdluctuatesvia rapid flips of loose spins. time than that of the waiting time
This background fluctuations drive the system into one of the  Though not presented here, we find that another frustrated
ground state configurations belonging to the maximum entsing system, the fully frustrated Ising model on a square
tropy sector. At the same time, the fluctuation significantly|attice[36] exhibits quantitatively the same critical dynamics
affects the diffusion property of defect motions. It turns outag the triangular AFI moddB7]. It is well known[19] that
that the evolution dynamics is characterized by a singlghese two frustrated systems share common equilibrium
dominant length scale, i.e., the mean separation of UnifOfm'}Sroperties. We have seen that the two systems belong to the
distributed defects, and that it is self-similar under the resggme universality class with respect to the nonequilibrium
caling the distance in terms of this characteristic length scalgyitical dynamics as well. It would be interesting to study the
We have argued that this length exhibits a genuine subdiffunonequilibrium critical dynamics of other models which has
sive growth in time, not a diffusive growth with a logarith- gimilar equilibrium properties. The three-state AF Potts
mic correction. This subdiffusive nature is attributed to themodel on a square lattida 4,38 is an example of such sys-
fact that the structure of the background-state induces a Miams. It would be also valuable to investigate how the non-
croscopic blocking to the defect motion. The dynamics ofequilibrium critical dynamics is affected when different dy-

defects on dixedbackgroundi.e., loose spins are frozen}in  namic rules such as spin-exchange kinetics are employed.
becomes more subdiffusive compared to that in the presence

of background fluctuations.
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